

Implementation of genomic selection in Miscanthus sinensis for ecosystem services

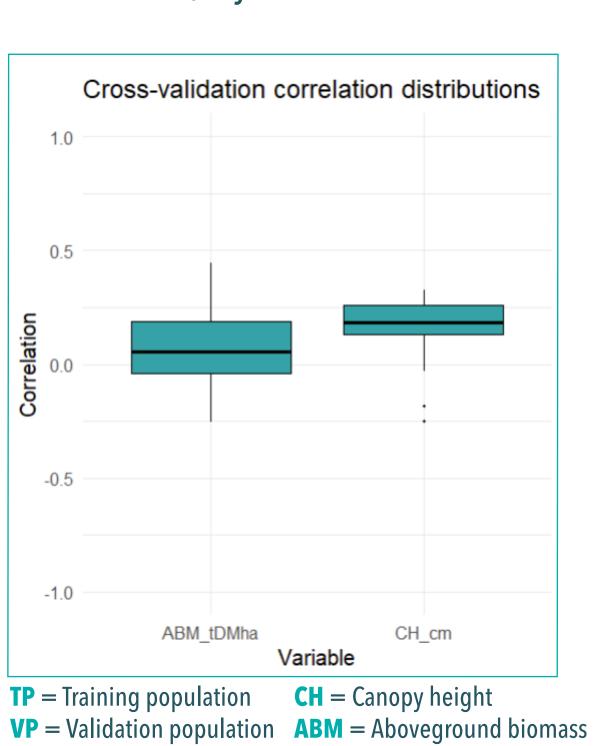
Manuel Derrien, Séverine Monnot, Maryse Brancourt-Hulmel

Cross-border joint research unit BioEcoAgro

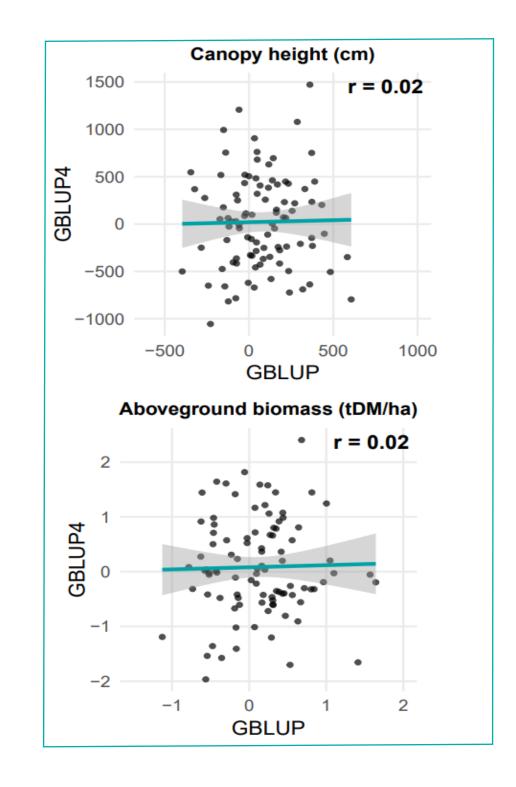
INTRODUCTION

Miscanthus sinensis is a perennial, undomesticated species originating from Eastern Asia. As the stem is annually harvested the plant is pseudo-annual for the aboveground part. It is one of the parents of the highly productive interspecific hybrid *Miscanthus* x *giganteus*. This is a very low-input crop that can produce 10-15 **DMt/ha per year**. Management over the following 20 years is minimal: one harvest per year, no irrigation, no fertilization, no fungicide and only herbicides during crop establishment. For this reason, it is considered a model plant for the improvement of ecosystem services (provisioning, regulating, maintenance, and cultural).

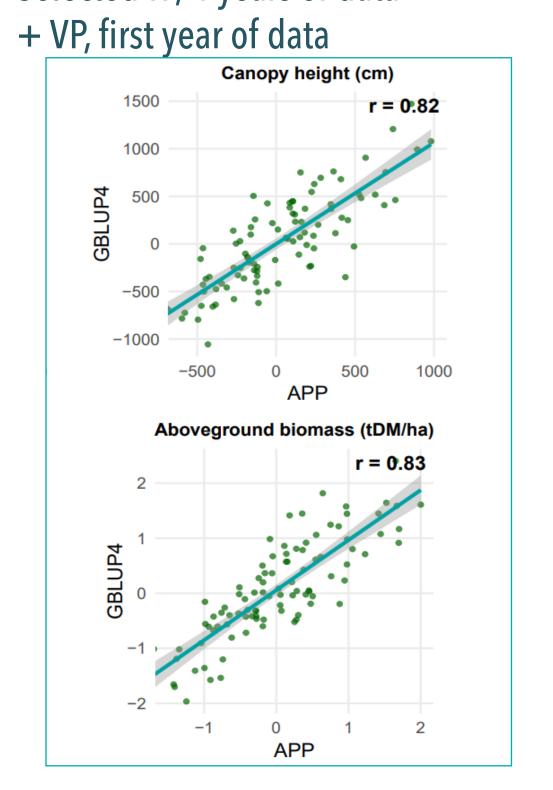
Sterile panicles* **Multi-use biomass** Prevent invasiveness In field Ornamental Biodiversity habitats Natural windbreak * M. sinensis is usually fertile (2x or 4x) but tolerates Albedo regulation different ploidy levels, which enables the breeding of Prevents pesticide drift 3x sterile varieties. Ornamental When harvested dried Animal bedding Horticultural mulch Heating Permanent mulch of dead leaves Biofuels Prevents weed growth from year 2 Restores carbon to soil Phytostabilises heavy metals Non-spreading rhizome Prevents invasiveness Nitrogen uptake and remobilization Prevents soil erosion Phytostabilises heavy metals Preserved underground water quality - Multiplication through propagation** No inputs required: ** Therefore, parental fixation is unnecessary, No nitrate or chemical leaching and the F1 progeny can be directly used in Suitable for water catchment area subsequent crosses. F1 full-sib populations Productive use of marginal soils are segregating.


MISCANTHUS SINENSIS TAKES UP TO FOUR YEARS TO REACH ITS YIELD PLATEAU. HOW AND WHEN SHOULD GENOMIC SELECTION BE IMPLEMENTED TO ACCELERATE GENETIC GAIN?

MATERIALS & METHODS


- 155 F1s from a cross between two varieties segregating for yield component traits.
- Two staggered-start designs in two sites to separate environmental effect from age effect.
- 14k SNPs markers (segregation ratios of 1:1, 1:3 and 3:1).
- Single-Step GBLUP model integrating factors including age, site, environment, and spline functions to account for spatial effect.
- Estimation of adult phenotype projection by adding to the training set the juvenile data of the validation population to predict (= to project) the genetic value at adult stage

RESULTS · Objective: predict genetic value at age 4


Naive prediction Random TP, 4 years data • 5 folds

Directed prediction Selected TP, 4 years of data

Adult phenotype projection (APP) Selected TP, 4 years of data

TO BE CONTINUED...

1. Predictions based solely on genetic data are not accurate enough yet.

Example of staggered-start design

- 2. Adult phenotype projections are promising to reduce the breeding cycle from four years to one year.
- 3. Predict phenotypes in a **half-sib population** that was also phenotyped for provisioning services traits.
- 4. Test predictions for regulating services such as nitrate remobilization.
- 5. Simulate phenotypic variance in full-sib populations